Tektronix

Advance your AFG. Advance your test. Introducing the New AFG31000 Series Arbitrary/Function Generators

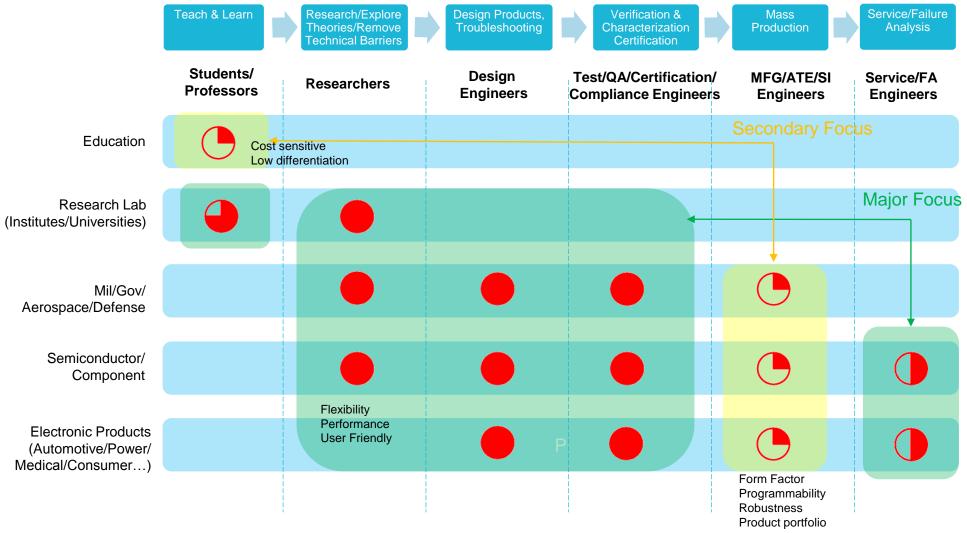
PARTNER EXECUTIVE PRESENTATION

Eric Yang (eric.yang@tektronix.com) Richeal Chen (richeal.chen@tektronix.com)

Preq 1000 000 000 MHz Preq 1000 000 000 MHz Arrold 1000 Upp Offset 0 mV Uvits Vpp Mod Type Mod Type Mod Type	OII 5he	Continuous	CHQ	• Modul	ation 🔹		Maddatian
	Freq	1.000 000 000 00 MHz	Freq	1 000 000 000	CO MH2	Server	(Bar)
Area Color <	Phase	0.60*	Anpl	1.000 vpp			
	Anol	1.000 vpp	Offset	0 NV		Banda Araba Street and Araba	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
	Offset	9 mV	Units	Vpp	•	and the second sec	A CONTRACTOR OF A CONTRACTOR OFTA CONTRACTOR O
	Units	Vpp +	Mod Type	AN:			Transaction 1/2
			AM Source	Internal		[managed]	
	0			No.		and the second se	A DESCRIPTION OF TAXABLE

-

Customer challenges


- Electronic designs are getting more complex than ever
- More sophisticated test are needed to validate if designs meet specifications and compliance requirements
- Design and test engineers are facing pressure to get their test job done with shorter time and less cost

AFG31000 is a waveform generation platform with an up-to-date user experience, versatile functionality, high performance, and low cost. It greatly improves test efficiency so users can focus more on their innovative jobs.

Who are the customers?

PRODUCT REALIZATION FLOW

What do the customers do?

THREE COMMON USE CASES


- Generate function waveforms
 - Use built-in waveforms like sine, square, pulse, etc., running in continuous, modulation, sweeping, or burst modes, to stimulate DUTs
- Generate arbitrary waveforms
 - Create an unavailable waveform with software, or capture real world waveforms with oscilloscopes, then transfer to the AFG for replication and to stimulate DUTs
- Automated test
 - A series of tests programmed and automatically run by a PC to validate function or characterize performance of DUTs

Market trend and customer pain points

- Shorter time-to-market, but
 - Reading manual/training is time consuming and painful
 - Exploring in deep menu to change settings is annoying
 - Product and designs are getting more complex, more tests are needed to be done
- Avoid risk/uncertainty, but
 - "Nominal" settings sometimes are misleading; it may lead to wrong test results, schedule delay, or even faulty design/product
 - Some users even are not aware of that!!!
- Reduce cost, but
 - Tests are getting more complex and must be done with limited budget

Creating a new AFG standard

AN AFG BEYOND JUST AN AFG

FOUR Industry Firsts

- Nine-inch capacitive display
- Monitor waveform added at device under test (DUT) in real time (InstaView™)
- 3 Waveform sequencer integrated*

2

Draw waveform with fingertips with the built-in waveform creation tool

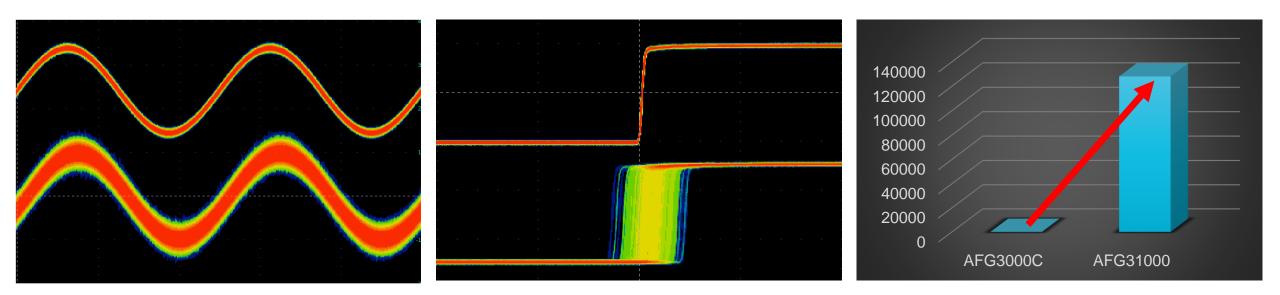
Key Specifications

CLEANER SIGNAL, DEEPER MEMORY

		AFG31021 / AFG31022	AFG31051 / AFG31052	AFG31101 / AFG31102	AFG31151* / AFG31152*	AFG31251* / AFG31252*		
	Vertical resolution			14-bit				
	Sine frequency range	1 μ Hz to 25 MHz	1 µHz to 50 MHz	1 µHz to 100 MHz	1 µHz to 150 MHz	1 μHz to 250 MHz		
	Square/Pulse frequency range	1 μ Hz to 20 MHz	1 µHz to 40 MHz	1 µHz to 80 MHz	1 µHz to 120 MHz	1 µHz to 160 MHz		
	Edge time	7.0 ns	5.0 ns	3.5 ns	3.0 ns	2.0 ns		
Basic (AFG) Mode	Amplitude (into 50 ohm)	> 60 MHz to	//Hz: 1 mVpp to 10 V o ≤ 80 MHz: 1 mVpp t ≤ 100 MHz: 1 mVpp	≤ 200 MHz: 1 mVpp to 5 Vpp > 200 MHz to ≤ 250 MHz: 1 mVpp to Vpp*				
	Arb Waveform length			2 to 128kpts				
	Sample rate	250 MSa/s	1 GSa/s (wfm length>	>16kpts: 250 MSa/s)		ngth>16kpts: 250 a/s)		
	Jitter (typ)			2.5ps				
Advanced	Waveform length	16 Mpts standard, 128 Mpts optional						
(Waveform Sequencer)			1 (continuous, gated,	triggered), 1 - 256 (s	sequence mode)			
Mode	Variable sample rate	1 µSa/s to 250 MSa/s	1 μSa/s to 500 MSa/s	1 µSa/s to 1 GSa/s	1 µSa/s t	o 2 GSa/s		
					* Droliminor	subject to change		

* Preliminary, subject to change

Key improvements vs. AFG3kC


LESS NOISE, LOWER JITTER, DEEPER MEMORY

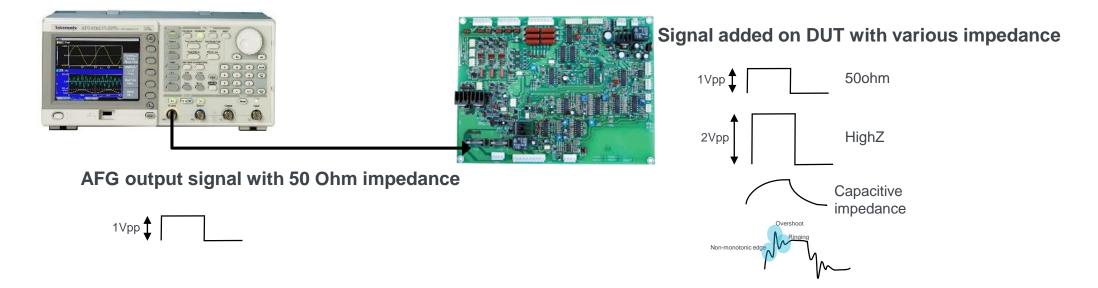
10x less noise Better signal fidelity

40x lower jitter Higher timing precision

1000x memory

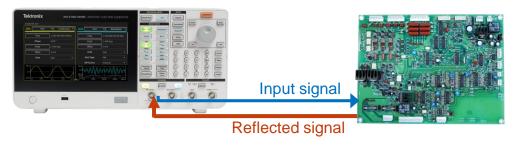
Larger space for arb waveforms

1. Industry First Nine-inch Capacitive Display

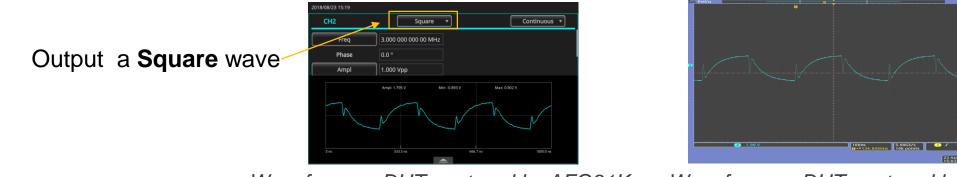

PINCH, ZOOM, SWIPE USER INTERFACE OPERATES AS YOU THINK IT SHOULD

- No need to read manual
- Easier to locate the settings and parameters with a shallow menu tree
- Keep using your ways to change settings with touchscreen, button, or knob
- Shortcut to access frequently-used settings with swipe operations

2. Industry First InstaView™ Realtime Waveform Monitoring UNMATCHED IMPEDANCE ISSUE CANNOT BE NEGLECTED


- During design/debug, R&D customers noticed that the output waveform from the AFG could be different from the one added at the DUT due to an impedance mismatch issue.
- An extra step, to use an oscilloscope to check the signal on the DUT, cannot be neglected.

The signal's output from the AFG and added at the DUT can be different due to unmatched impedance.


2. Industry First InstaView[™] Real-time Waveform Monitoring MINIMIZE THE UNCERTAINTY CAUSED BY UNMATCHED IMPEDANCE

• When impedance is unmatched, some signal is reflected. With the reflected signal, InstaView rebuilds the waveform added at the DUT.

With reflected signal, InstaView rebuilds the waveform added at the DUT.

• With InstaView, users can now monitor the waveform added on the DUT from the AFG in real time.

Waveform on DUT captured by AFG31K Waveform on DUT captured by oscilloscope

2. Industry First InstaViewTM Realtime Waveform Monitoring WHAT YOU SEE IS WHAT YOU GET AT THE DUT

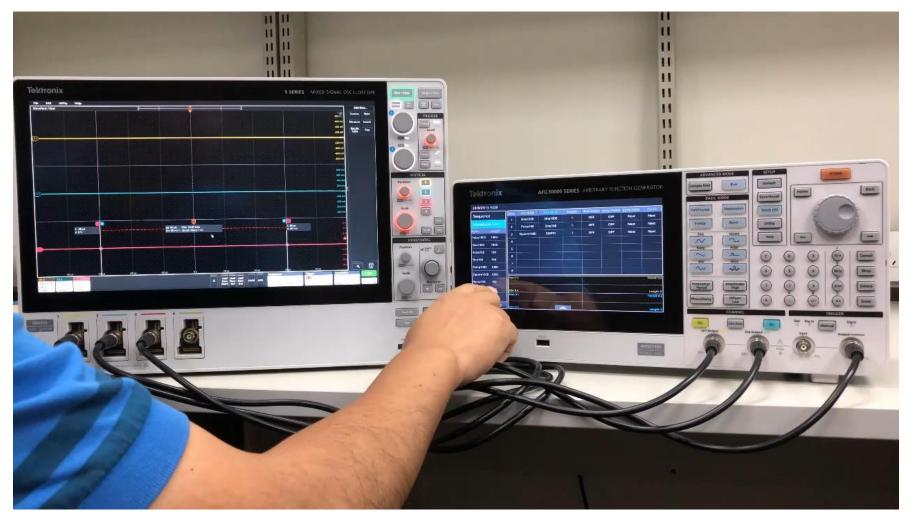
When DUT impedance is changed, 50 Ohm/High-Z and capacitive load with different frequencies, the waveform added at the DUT is changed and can be monitored from the AFG

3. Industry First AFG with Waveform Sequencer Integrated DESIGN VALIDATION / CHARACTERIZATION CAN REQUIRE HUNDREDS OF TEST CASES

- During design validation/characterization, QA and hardware testing engineers need to perform hundreds of test cases with the combining different waveforms and settings.
- These test cases are performed manually or through programming to control the AFG. Either method is complex and time consuming.

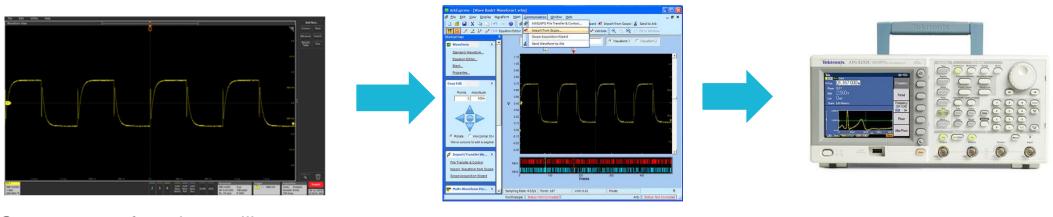
	A	В	C	U	E	F
1	No.	Funciton	Frequency	Amplitude	Duration	Pass or Fail
2	Case1	Sine	20KHz	1 Vp-p	20 S	
3	Case2	Sine	25KHz	1 Vp-p	20 S	
4	Case3	Sine	30KHz	1 Vp-p	20 S	
5	Case4	Sine	40KHz	1 Vp-p	20 S	
6	Case5	Square	20KHz	1 Vp-p	20 S	
7	Case6	Square	25KHz	1 Vp-p	20 S	
8	Case7	Square	30KHz	1 Vp-p	20 S	
9	Case8	Square	40KHz	1 Vp-p	20 S	
10	Case9	Sine	20KHz	2 Vp-p	20 S	
11	Case10	Sine	25KHz	2 Vp-p	20 S	
12	Case11	Sine	30KHz	2 Vp-p	20 S	
13	Case12	Sine	40KHz	2 Vp-р	20 S	
14	Case13	Square	20KHz	2 Vp-p	20 S	
15	Case14	Square	25KHz	2 Vp-p	20 S	
16	Case15	Square	30KHz	2 Vp-p	20 S	
17	Case16	Square	40KHz	2 Vp-p	20 S	

A medical device needs to pass a stress test with hundreds of combinations of waveforms and settings.


3. Industry First AFG with Waveform Sequencer Integrated REDUCE THE COST TO GENERATE WAVEFORMS WITH COMPLEX TIMING

As an MP3 player can play songs in a user-defined list, the waveform sequencer can output waveforms in a customer defined sequence.

- 1/10 the price of an AWG to generate waveform sequences with
 - 256 steps
 - Up to 128MSa/channel
 - Variable sampling clock up to 2GSa/s
- · Generate waveforms with complex timing
 - Continuous, triggered, gated, sequenced
- Retain details in waveforms without skipping samples


2018/06/20	16:37		(~					
Sequence	ر ا	Index	Ch1 WFM	Ch2 WFM	Repeat	Wait Event	Jump Event	Jump Addr.	Go To
		1	Pulse1000	Sine1000	3	OFF	OFF	Next	Next
Waveform		2	Square168	Sine168	5	OFF	OFF	Next	1
Name	Length	3							
Pulse1000	1000								
Sine1000	1000	4							
Ramp1000	1000	5							
Square1000	1000	6							
Pulse168	168								
Sine168	168	8							
Square168	168	Max: 0.5							Period: 0.168
Ramp168	168	Min: -0.5	v						Length: 1
		Max: 0.5	/						Period: 0.168
<u>ل</u>	ß	Min: -0.5	v						Length: 1

3.Industry First AFG with Waveform Sequencer Integrated DRAG, DROP, SWIPE TO CONFIGURE THE WAVEFORM SEQUENCE ON THE AFG

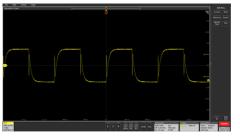
4. Industry First Integrated Waveform Creation / Editor Tool PC IS REQUIRED TO CREATE ARB WAVEFORMS

- In the traditional way, during designing/debugging/troubleshooting, R&D customers MUST use a PC to create/edit/transfer the arbitrary waveforms to the AFG.
- The waveform acquired from the oscilloscope CANNOT be loaded into the AFG directly and signal amplitude information is normalized.

Capture waveform by oscilloscope

Edit waveform in PC software

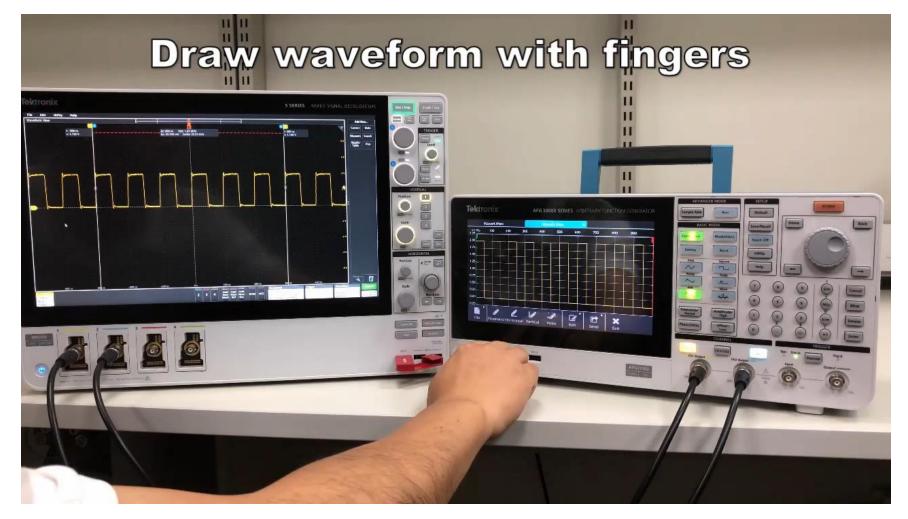
Load waveform to AFG


A traditional process to generate an Arb waveform on an AFG

4. Industry First Integrated Waveform Creation / Editor Tool

DRAW A WAVEFORM WITH YOUR FINGERTIPS; MINIMIZE THE TIME IT TAKES TO CREATE / TRANSFER ARB WAVEFORMS

- ArbBuilder is an integrated tool for arbitrary waveform creation/editing
 - All operations are on the AFG; no extra PC is needed
 - Amplitude/offset is kept in the waveform; no normalization
- Use a USB drive to directly load CSV files saved from the oscilloscope into the AFG


Save *.csv in a USB drive

Load *.csv from the USB drive

Load oscilloscope captured waveform to AFG directly

4. Industry First Integrated Waveform Creation / Editor Tool

CREATE, EDIT, AND OUTPUT ARB WAVEFORMS ON THE AFG DIRECLTY

Pricing and Positioning

AFG31K Series Pricing

MAIN MODELS

Model	Bandwidth	Max Sample Rate	Memory Depth	Channels	Output	Master Price
AFG31021	25 MHz	250 MS/s	16 MSa/ch	1	10 V _{p-p}	\$2,210
AFG31022	25 MHz	250 MS/s	16 MSa/ch	2	10 V _{p-p}	\$3,340
AFG31051	50 MHz	500 MS/s	16 MSa/ch	1	10 V _{p-p}	\$2,440
AFG31052	50 MHz	500 MS/s	16 MSa/ch	2	10 V _{p-p}	\$3,680
AFG31101	100 MHz	1 GS/s	16 MSa/ch	1	10 V _{p-p}	\$4,270
AFG31102	100 MHz	1 GS/s	16 MSa/ch	2	10 V _{p-p}	\$6,090
AFG31151	150 MHz	2 GS/s	16 MSa/ch	1	$5 V_{p-p}$	\$5,020
AFG31152	150 MHz	2 GS/s	16 MSa/ch	2	$5 V_{p-p}$	\$7,150
AFG31251	250 MHz	2 GS/s	16 MSa/ch	1	$5 V_{p-p}$	\$9,600
AFG31252	250 MHz	2 GS/s	16 MSa/ch	2	$5 V_{p-p}$	\$14,100

AFG31K Series Pricing

INSTRUMENT OPTIONS

	Description	Master Price (For 1 channel)	Master Price (For 2 channels)
-SEQ	License; Enables sequence mode; Node locked	\$300	\$600
-MEM	License; Extends arb memory to 128Mpts; Node locked	\$500	\$1,000

POST-PURCHASE UPGRADES

All post purchase upgrades upgrades can be done in the field with a license upgrade; no need to return to factory

	Description	Master Price (For 1 channel)	Master Price (For 2 channels)
AUP-AFG3SEQ	License ; Enables sequence mode; Node locked	\$330	\$660
AUP-AFG3MEM	License ; Extends arb memory to 128Mpts; Node locked	\$550	\$1,100
AUP-AFG3BW25T50	License ; Bandwidth extension from 25MHz to 50MHz; Node locked	\$253	\$374
AUP-AFG3BW25T100	License ; Bandwidth extension from 25MHz to 100MHz; Node locked	\$2,270	\$3,030
AUP-AFG3BW50T100	License ; Bandwidth extension from 50MHz to 100MHz; Node locked	\$2,010	\$2,650
AUP-AFG3BW150T250	License ; Bandwidth extension from 150MHz to 250MHz; Node locked	\$5,040	\$7,650

POSITIONING REPLACEMENT OF AFG3KC SERIES

Master Price		Tektronix AFG Family	
\$15,000			
\$13,000			NEW ! ————————————————————————————————————
\$11,000		AFG3KC	
\$9,000			
\$7,000		Superior performance,	9-inch capacitive touchscreen, with
\$5,000		versatile functionality cover diversified	InstaView™, waveform sequencer and waveform
\$3,000		customer needs on testing	editor integrated for high- end design and research
\$1,000	AFG2K	P Esse	
\$0	AFG1K		000C will be replaced by
		performance, compact form AFG3 bench and rack applications	1000 one year after launch*

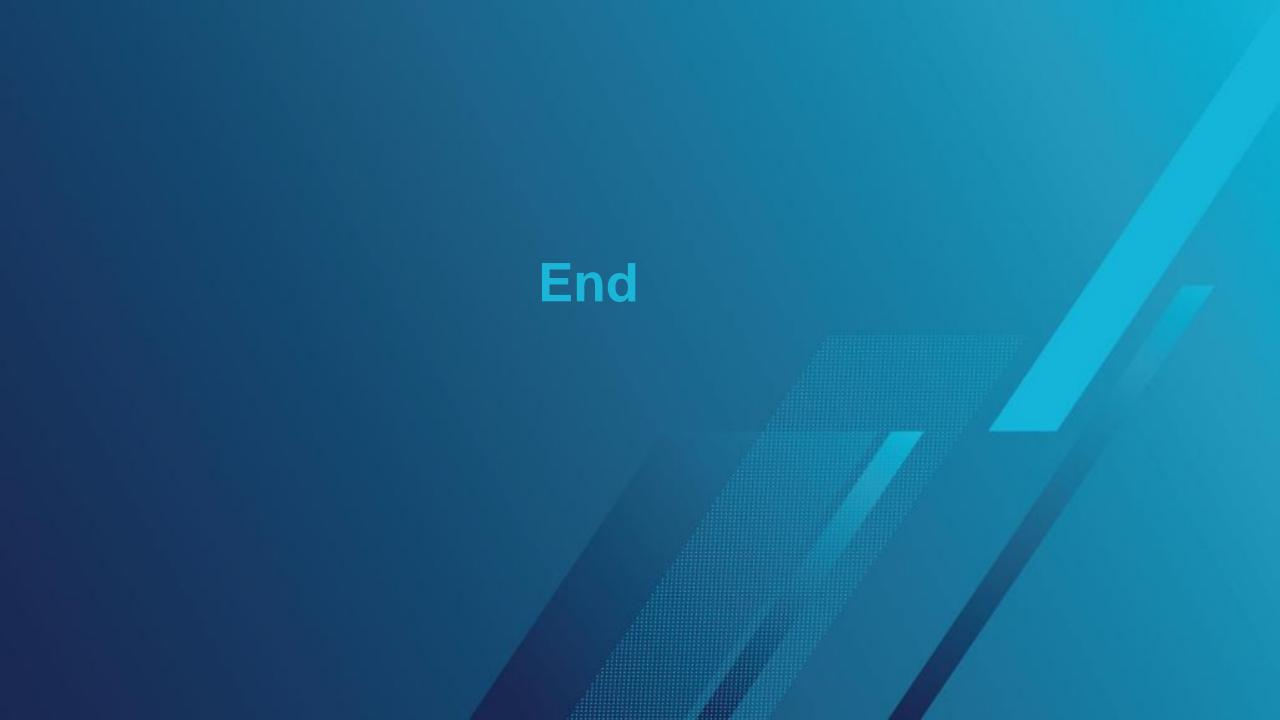
* Limited supply and supply deplete dates will depend on the availability of materials.

Replacement of AFG3000C

NOMENCLATURE AND AFG3000C COUNTERPARTS

Schedule and Stocking

AFG31K Schedule


Milestone	Phase I *	Phase II *
VIP OOQ (open order queue for channel partners)	Aug. 25, 2018	Oct. 27, 2018
PSR (product shipment release)	Sept. 23, 2018	Nov. 16, 2018
PA (public announcement)	Oct. 23	8, 2018
Public OOQ (open order queue for end customers)	Oct. 20, 2018	Oct. 27, 2018

* Phase I: AFG31021, AFG31022, AFG31051, AFG31052, AFG31101, AFG31102

* Phase II: AFG31151, AFG31152, AFG31251, AFG31252

AFG31K Stocking Recommendation

- AFG31K is to replace AFG3KC.
- All AFG3KC will be phased out 12 months after AFG31K PA.
- AFG31K is expected to achieve 20% more sales versus AFG3KC.
- Recommended to stock the equivalent model of AFG3000C that you currently stock.
- For demo units, order with -DDU option or post purchase upgrade option AFG3DDU
 - The option is valid for 400 days after installation
 - The option enables the highest bandwidth (100MHz for low end models or 250MHz for high end models), 128Mpts arb memory (-MEM option) and sequence mode (-SEQ option)

Find more valuable resources at <u>TEK.COM</u>

Copyright © Tektronix. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification and price change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks or registered trademarks of their respective companies.

091718 LAB 1KW-61455-0

